U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 347

SUGGESTIONS FOR WRITING ANSI-STANDARD FORTRAN
7 ON THE
CYBER 205

James J. Tuccillo
Automation Division

January 9, 1989

This is an unreviewed manuscript, primarily
intended for informal exchange of information
among NMC staff members.

SUGGESTIONS FOR WRITING ANSI-STANDARD FORTRAN
ON THE
CYBER 205

J. Tuccillo
Dec 1988

I. INTRODUCTION

With the maturation of the CDC FORTRAN compiler and the
availability of the VAST-2 FORTRAN preprocessor, it is now
possible to write ANSI-standard FORTRAN for the CYBER 205
that is as efficient as hand vectorized code. The compiler
will automatically vectorize many constructs which we
currently write in semicolon or vector function form.
Certain constructs which are not vectorized by the cCDC
compiler will be converted to vectorized code by the VAST-2
preprocessor. VAST-2 is a FORTRAN-in/FORTRAN-out code
preprocessor used prior to compilation. For the advantages
of readability, portability, and maintainability, it
behooves us to write new code for the CYBER in the ANSI
standard and use the automatic vectorizer and VAST-2
preprocessor to achieve vectorization. This assumes, of
course, that the data structures and algorithms of the
program have been designed for vectorization. This document
will address the topic of writing ANSI-standard code as
opposed to using CDC non-ANSI extensions.

There may always be situations where hand vectorization is
necessary. These situations will, in general, represent a
small percentage of the code. The non-ANSI standard code can
usually be confined to small, easily identified subroutines
and functions so that the vast majority of the code is in
the ANSI standard. This is a widely accepted practice in
software engineering.

The intended audience for this paper is CYBER 205 users,
therefore, a general familiarity with the 205 is assumed.

IT. EXAMPLES

In this section several code segments which are common to
many NMC codes will be presented. The CDC compiler
transparently vectorizes many of these constructs. The VAST-
2 preprocessor is needed on others. VAST-2 generates FORTRAN
with CDC extensions from FORTRAN. The processed FORTRAN will
have semicolon notation and CDC FORTRAN vector functions and
will look similar to the hand vectorization present in most
NMC codes. Depending on your code, VAST-2 may or may not be
needed. If it is used prior to compilation it performs the
vectorization analysis which the CDC compiler would normally
perform.

IT.1 SIMPLE DO LOOPS

The most common construct in our CYBER codes, which we have
traditionally hand vectorized, is the simple DO LOOP shown
below. In this case simple means a loop with no conditional
testing.

DO 1 I = 1, LEN
A(I) = A(I) + B(I)
1 CONTINUE

This is usually hand vectorized as follows:
A (1; LEN) = A (1; LEN) + B (1; LEN)

The hand vectorization is not needed. The DO LOOP will be
automatically vectorized by the compiler if the automatic
vectorization compiler option is used. If the value of LEN
is not known at compile time then the UNSAFE vectorization
option must be included. Automatic strip-mining of the loop
will be performed if the vector length is greater than
65535. Strip-mining is the process by which a loop is
processed, transparently to the programmer, in several steps
so as not to exceed the loop iterate limit of 65535 on the
"CYBER.

VAST-2 will convert the DO LOOP to semicolon form with code
to perform strip-mining if LEN is greater than 65535 or if
LEN is not known at compile time.

In the hand vectorized code, the value of LEN must be less
than 65536. If the compiler does not know the value of LEN
at compile time it assumes you have taken the proper steps .
to insure that it is less than 65536. If it is not then the
results may be incorrect because the actual vector length
will be modulo 65535. If the compiler knows the value of LEN
and it is greater than 65535 it will issue a compiler error.
It will not stripmine code written in semicolon form.

Clearly it is safer and more general to let either the
automatic vectorizer or the VAST-2 preprocessor perform .
vectorization of simple loops. The loops can, of course, be
more complex as long as the basic requirements of
vectorization are met. (see the CDC FORTRAN manual for
precise requirements for vectorization).

IT.2 INDIRECT ADDRESSING

Indirect addressing is also automatically vectorized by the
CDC compiler. An example is shown below.

DO 1
A

I =1, LEN
()
1 CONTINU

; =B (INDEX (I))
E

where INDEX is an integer array which has been previously
assigned. We normally use the GATHER instruction on the
CYBER as follows:

A (1; LEN) = Q8VGATHR (B (1; LEN),
INDEX (1; LEN);
A (1; LEN))

Indirect addressing on the left hand side, shown below, is
also automatically vectorized.

DO 1 I = 1, LEN
A (INDEX (I))=B (1I)
1 CONTINUE

The use of the SCATTER instruction is the normal procedure
for hand vectorization as shown below.

A (1; LEN) = Q8VSCATR (B (1; LEN),
INDEX (1; LEN);
A (1; LEN))

VAST-2 will convert the DO LOOPs to GATHERs and SCATTERs
with strip-mining, if necessary.

IT.3 . VECTORIZED IF-THEN-ELSE

The CDC FORTRAN compiler will not, at this time, vectorize
IF-THEN-ELSE constructs, however, the VAST-2 preprocessor
will. An example is given below.

DO 1 I =1, LEN
IF (A (I) .LT. 10.0) THEN
A(I)=10.0
ELSE
A(I)=2A(I)*2aA(TI)
END IF
1 CONTINUE

The normal hand-vectorized code would be as follows:

WHERE (A (1; LEN) .LT. 10.0)
A (1; LEN) = 10.0
OTHERWISE
A (1; LEN)
END WHERE

A (1; LEN) * A (1; LEN)

VAST-2 will convert the IF-THEN-ELSE structure directly to
the WHERE-OTHERWISE structure.

II.4 COMPRESSION AND DECOMPRESSION

Often a series of calculations need to be done on a subset
of an array. There are two procedures for handling this. The
first procedure, represented by II.3, is to perform the
calculations on the entire array and store the results
according to a conditional test. This is the so-called WHERE
block or bit-vector controlled store. The second procedure
is to compress out the subset of points intc a smaller
contiguous array, perform the needed calculations, and then
decompress the data back into the desired array. The first
procedure is generally preferred when most of the array
requires the calculations or the number of calculations
required on the subset of the array is small and the
overhead of compression/decompression is greater than the
computational work on the subset. The second procedure is
preferred when many calculations are to be performed on a
small percentage of the array. Compression/decompression
will be automatically vectorized by VAST-2. The intermediate
arrays will be allocated from dynamic space and will be
transparent to the programmer. The only requirements are the
inclusion of a VAST-2 directive (they begin with ’‘C#’)
before and after the loop and use of the SC compiler option.
An example follows.

C
C#ASSERT USE (CMPRS XPND)
C
DO 1 I =1, LEN

IF (A (I) .GT. 0.0) THEN
C
C computational work
C

END IF

1 CONTINUE

C#ASSERT USE (CONTROL BITS)

IT.5 32 - BIT CONSTANTS

The CDC compiler requires that 32-bit constants be
identified as such using the following form:

nsSx

where n is a string of digits
and ¥ is a signed integer.

This is analogous to the ’E’ notation normally used for
scientific notation. An example is as follows:

R =2.8704 S + 2

If this form is not followed then the arithmetic may be 64-
bit which would defeat one of the two reasons for using 32-
bit; an increase in execution speed. The above form is not
ANST standard. The declaration of the variable R would be as
follows:

HALF PRECISION R

or the more general form for an entire program
section

IMPLICIT HALF PRECISION (A-H, 0-Z).

Neither of these statements is ANSI-STANDARD and there is no
mechanism for having a 32-bit code without including them.
The ’S’ notation for specifying the value of a constant can
be avoided, however, by setting the value with a PARAMETER
statement. The PARAMETER statement is ANSI-standard. Any
value in a PARAMETER statement will be typed by its
declaration and all occurrences of the non-ANSI standard /S’
notation can be avoided. An example follows:

IMPLICIT HALF PRECISION (A-H, 0-Z)
PARAMETER (R = 2.8704 E + 2)

R will be typed as 32-bit according to the IMPLICIT
statement and will represent a 32-bit constant. If all
numeric values are handled in this manner then a code can be
converted to 32-bit on the CYBER simply by including the
IMPLICIT statement using an ’‘include’ facility. This will
result in a completely ANSI-standard code.

IT.6 CONTROLLED STORE WITH PRESET BIT VECTORS

One common operation in the NMC codes is a controlled store
with a bit vector that does not changes. The bit vector is
often setup at the beginning of the execution and is not
reset. Since a bit vector is not ANSI standard we will need
to create the mask with a real or integer array and allow
the compiler to generate the controlled store. The overhead
will be the repeated creation of a bit vector (
transparently to the programmer). This overhead should be
small, however, since many vector operations are usually
done prior to the controlled store. For example, if 50
arithmetic operations are done prior to the controlled store
the overhead would be 2%. An integer or real array for the
mask will require more storage than a bit vector, however,
the total increase for the program will be generally small.
VAST-2 will be required to vectorize the following code
sample.

CREATE INTEGER ARRAY FOR MASK (CONTROLLED STORE)

'DIMENSION IMASK (LEN)

CREATE MASK PATTERN
.MASK = 1 FOR STORE, = 0 FOR NO STORE

CALCULATION OF B

aaoaaoaaoa o0

DO 1 I =1, LEN

code to compute B

o Re N

1 CONTINUE

oMo Ne!

STORE B IN A UNDER CONTROL OF MASK

DO 1 I =1, LEN
IF (MASK(I) .EQ. 1) THEN
A(I) = B(I) '
END IF
1 CONTINUE

IT.7 FORTRAN INTRINSIC FUNCTIONS

When using FORTRAN supplied intrinsic functions and 32-bit
arithmetic you should code using the generic names as
opposed to the specific 32-bit names. The FORTRAN compiler
will choose the correct function based on the typing of the
arguments. Recall that the 32-bit specific intrinsic
functions are prefaced with an ’‘H’ and therefore are non-
ANSTI standard while the generic names are ANSI-standard.

IT.8 LINKED TRIADS

Linked triads are a combination of two vectors and a scalar
or two scalars and a vector joined by multiplication,
addition, or subtraction. This instruction executes at the
same rate as a vector multiply (after a slightly longer
startup) but produces twice the work. Needless to say you
should strive for linked triads in your code. You can help
the compiler generate linked triads by factoring your
equations into combinations of vectors and scalars as
indicated below.

DO 1 I =1, LEN
A(I)=R=* (B (I)-B(I+N)) +
(CP+R*C (I))
1 CONTINUE

t

The hand vectorized equivalent in triadic and diadic form
follows.

TEMP1(1; LEN) = R * (B (1; LEN) - B (NX+1; LEN))
A (1; LEN) =CP+ R * C (1; LEN)
A (1; LEN) =A (1; LEN) + TEMP1 (1; LEN)

Both code segements will results in two linked triads and
one vector add. The intermediate results from the DO LOOP
segment will be stored in dynamic space. There is no need
for hand vectorized triadic and diadic code. The compiler is
very good at identifying linked triads and will generally
minimize the amount of temporary storage in dynamic space.

On the ETA10 architecture there may be a disadvantage to
coding in diads and triads. The architecture will shortstop
intermediate vector calculations and produce faster
execution. It may not identify the opportunities for short
stopping if the code is in triadic and diadic form.

IT.9 REDUCTION FUNCTIONS (from ETA VAST-2 Manual)

A reduction function is an operation that condenses array
operands into one scalar value. VAST-2 will vectorize the
following operations (presented with the Q8 equlvalent)

OPERATION Q8'EQUIVALENT
S=S+A(I) ‘ Q8SSUM
S=8*A(I) Q8SPROD

S = AMAX1(S,A(I)) ' Q8SMAX

S = AMIN1(S,A(I)) Q8SMIN

S =S + A(I) * B(I) Q8SDOT

index of maximum element = Q8SMAXI

index of minimum element = Q8SMINI

IF (L(I)) N =N + 1 Q8SCNT

ITITI. SUMMARY

Technlques for writing vectorizable ANSI FORTRAN versions of
the most common hand vectorized code segments in NMC
programs have been presented. Once a code has been properly
designed for vectorization (appropriate data structures and
algorithms) it can be implemented primarily in ANSI FORTRAN
if the VAST-2 preprocessor is applied and the appropriate
CDC FORTRAN compiler options are used. ANSI FORTRAN is more
readable, portable and maintainable than hand vectorized
code. Some operations may need hand vectorization. These
code segments will generally be small and should be confined
to easily identified routines.

The reader is encouraged to read the ETA VAST-2 manual prior
to using it. There are many more examples of code segments
than presented here as well as detailed instructions for
using the various options of VAST-2.

